Refine your search:     
Report No.
 - 
Search Results: Records 1-3 displayed on this page of 3
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Development on laser cutting technique to suppress spatter particles aiming at disposal of radio-active waste

Naoe, Takashi; Teshigawara, Makoto; Futakawa, Masatoshi; Mizutani, Haruki; Muramatsu, Toshiharu; Yamada, Tomonori; Ushitsuka, Yuji*; Tanaka, Nobuatsu*; Yamasaki, Kazuhiko*

Proceedings of 8th International Congress on Laser Advanced Materials Processing (LAMP 2019) (Internet), 5 Pages, 2019/05

Laser cutting is one of the options in the disposal of radio-active waste, such as spallation neutron target vessel in J-PARC, etc. Due to unique characteristic of laser, such as non-contact system, it is more easily to provide remote-controlled system in comparison with conventional one, such as mechanical cutting machine, etc. However, a demerit of laser cutting is the sputter and fume caused by laser cutting, resulting in contamination with radio-active materials its surroundings. Recently it was developed that the spatter suppression technique by controlling laser beam profile in laser welding process. In order to apply this suppression technique to laser cutting, first of all, we attempted to observe the phenomenon at melting area during laser cutting using a high-speed video camera in order to make the physical model. The result showed that the appearance of fume and sputter were independently confirmed in the time evolution.

JAEA Reports

An Investigation of cementitious materials for radioactive waste repository; Mechanical properties of law alkalinity cementitious materials

Owada, Hitoshi*; Mihara, Morihiro; Iriya, Keishiro*; *

JNC TN8400 99-057, 43 Pages, 2000/03

JNC-TN8400-99-057.pdf:5.13MB

Cementitious materials are considered as candidate materials for the geological disposal of high-level radioactive waste and TRU waste. As the pH and the Ca content of leachate from the cementitious materials are high, the host rock and the buffer-material would be degraded by the leachate in the long-term. Therefore, transport properties and parameters such as solubilities and distribution coefficients of radionuclides would be changed and affect the performance of the repository. In order to dissolve this "High pH plobrem", the use of a low alkalinity cement is considered for the disposal. In this study, we summarized the necessity of the low alkalinity cement, and developed the approach of the low alkalinization of cement. And, the following were carried out in this study : A leaching test of cement paste, a fluid test of the mortar and a installation test of the concrete to the trial structure. From the leaching test using the cement paste, we confirmed that we were able to obtain the low alkalinity cement (HFSC) by addition of pozzolanic materials such as silica-fume and flyash. From the result of the fluid test of the mortar, we chose the cement for the practicability evaluation. The practicability of low alkalinity concrete was evaluated by installation test to the trial structure.As a result of these examinations, we proved that the pH value of the leachate from the cementitious material was reduced by adding SF and FA to Portland cement. Simultaneously, SF and FA had to be added in order to obtain the good workability. In addition, workability and mechanical strength of the cement which SF and FA were added are almost equivalent to the ordinary Portland cement. The results shows that the HFSC has high practicability.

Patent

加工装置および加工装置の制御方法

猿田 晃一; 直江 崇; 勅使河原 誠; 二川 正敏; 梁 輝

Erkan Nejdet*

JP, 2021-188317  Patent licensing information

【課題】加工により発生するヒュームの大気中への拡散防止およご前記ヒュームを回収可能な加工装置を提供すること。 【解決手段】 加工対象物10の局所部16を溶融するために、前記局所部16を加熱する加熱ヘッド122を備えた加熱装置120と、前記局所部16と前記加熱ヘッド122とを繋ぐ加熱エリア20の外側にミストカバー層40を形成するミスト層形成装置140と、液体からミスト41を生成して前記ミスト層形成装置140に供給するミスト生成装置130と、前記加熱ヘッド122により加熱されて溶融する前記局所部16を前記加工対象物10の加工場所12に沿って移動させる加工位置移動機構30と、を備え、前記ミスト層形成装置140から噴霧された前記ミスト41により、前記加熱エリア20の外周を覆う前記ミストカバー層40を形成した、ことを特徴とする加工装置。

3 (Records 1-3 displayed on this page)
  • 1